

ISO 14644-14 - compatibilité des équipements à l'introduction en salle propre : évolution normative et panorama des essais

Nadège BOUCARD

9 novembre 2017

1- PRESENTATION GROUPE ICARE

- Prestataire de service dans le domaine de l'industrie de la santé (pharmaceutique, dispositifs médicaux, biotechnologie, cosmétique).
- 3 entités : Laboratoire Icare Icare Validation Medlab.
- Analyses microbiologiques et physico-chimiques, tests produits et packaging, qualification équipements et validation des procédés, qualification et contrôle des environnements classés, formation et conseil.

2- SOMMAIRE

- OBJECTIFS VISES
- **DEMARCHE**
- **MISE EN ŒUVRE**

3- OBJECTIFS VISES

- Maitrise de l'environnement de production en zones classées
- Pour répondre aux problématiques d'introduction de nouveaux équipements en zones classées sans compromettre la propreté de l'environnement
- Domaine d'activité où la contamination particulaire peut avoir un impact sur la qualité, la sécurité, la conformité du produit (optique, opto-mécanique, spatial, semi-conducteur, laser, pharmaceutique)
- Absence jusqu'à présent de référentiel décrivant une méthodologie

- Démarche prise en compte dès la conception de l'équipement
- Accord entre le donneur d'ordre et le fabricant sur
 - > l'étendue granulométrique,
 - > sur les éléments à tester
 - > et le mode de fonctionnement (Avec ou sans produit, cadence, paramètres critiques ...)
- Evaluation basée sur la concentration de particules en suspension dans l'air

Inspection visuelle

- > Evaluation qualitative
- Identification emplacements contaminés après procédures de déballage, assemblage, installation, nettoyage, décontamination ...
- Conditionnement équipement et fonctionnement représentatif

- > Identification des variables
- > Définition de l'état d'utilisation
- Définition des modes de fonctionnement

- Caractériser et déterminer l'environnement d'essai
 - > Classe ISO N plus propre que la zone d'utilisation prévue

- > Vitesse écoulement d'air [0,3 0,5] m.s⁻¹
- Température [18 25]°C
- > HR% [30 70]%

<u>Essai optionnel</u>: direction flux d'air, essai électrostatique, essai de sédimentation particulaire.

L'environnement ne doit pas contenir d'autre source d'émission de particule

(utilisation d'un flux d'air unidirectionnel)

- Identifier les localisations des sources à forte émission de particules (FEP)
 - Approximative avec un LSAPC utilisé en mode alarme (sonore ou visuelle)

- Déterminer précisément des emplacements à FEP
 - L'objectif est de sélectionner au moins un emplacement (le plus critique) pour le mesurage de l'aptitude à l'emploi.
 - > Mesure: 28,3 I/min minimum et ouverture sonde maxi 20cm²
 - Autres points d'intérêt particulier peuvent être ajoutés

Rédiger un protocole

- Description de l'équipement (utilisation, paramètres)
- Inspection visuelle
- Modes de fonctionnement de l'équipement
- Nombre de cycles de fonctionnement
- > Positionnement de l'équipement
- Localisation des points de mesurage retenue et leur justification
- Positionnement des sondes du compteur LSAPC
- Etendue granulométrique (3 étendues larges)
- Volume et durée d'échantillonnage
- Nombre de lectures indépendantes consécutives ≥ 100

Enregistrement des mesures

- Traitement statistique des données
 - > Moyenne > 10 particules

Calcul de la moyenne

$$\overline{x} = \frac{\left(x_{i,1} + x_{i,2} + \dots + x_{i,n}\right)}{n}$$

Calcul de l'écart type

$$s = \sqrt{\frac{\left(x_{i,1} - \overline{x}\right)^2 + \left(x_{i,2} - \overline{x}\right)^2 + \dots + \left(x_{i,n} - \overline{x}\right)^2}{\left(n - 1\right)}}$$

Limite supérieure de confiance 95%

$$P_u = \overline{x} + 1,66 \times \frac{s}{\sqrt{n}}$$

$$z = \sqrt{n} \frac{G - P_u}{s}$$

Valeur z

Si z >1,645, la limite de classe G ne sera pas dépassée avec un niveau de confiance 95%

- Traitement statistique des données
 - Moyenne ≤ 10 particules (loi de Poisson)

Calcul de la moyenne

Limite supérieure de confiance Pu

$$\overline{x} = \frac{\left(x_{i,1} + x_{i,2} + \dots + x_{i,n}\right)}{n}$$

Valeur moyenne	Limite supérieure de confiance
$\leq \overline{x}$	P_{u}
0,051 2	0
0,355	1
0,818	2
1,366	3
1,970	4
2,613	5
3,285	6
3,981	7
4,695	8
5,425	9
6,169	10
6,924	11
7,690	12
8,464	13
9,247	14
10,000	15

NOTE Le <u>Tableau 1</u> se base sur une distribution de Poisson pour une limite de confiance de 95 %.

Exemple traitement statistique des données (100 prélèvements)

	≥ 0,1µm	≥ 0,2µm	≥ 5µm
Moyenne	16,33	7,39	0,9
Ecart-type	68,12	28,13	2,27

Pu = $16,33 + 1,66 \times 68,12/\sqrt{100} = 27,64$ \Rightarrow ISO 3 limite 28 particules Z=10 (28-27,64)/68,12 = 0,05 < 1,645 \Rightarrow ISO 4 limite 283 particules Z= 10 (283-27,64)/68,12 = 37,49 > 1,645

Exemple traitement statistique des données (100 prélèvements)

	≥ 0,1µm	≥ 0,2µm	≥ 5µm
Moyenne	16,33	7,39	0,9
Ecart-type	68,12	28,13	2,27

Moyenne 7,39 → Pu = 12 < G=67 → Classe ISO 4

Moyenne $0.9 \rightarrow Pu = 3 < G=8.28 \rightarrow classe ISO 6$

Déclaration de l'aptitude à l'emploi

Pour les étendues granulométriques, spécification de la classe ISO

≥ 0,1 µm Numéro de la classe ISO N égal à 4

≥ 0,2 µm Numéro de la classe ISO N égal à 4

≥ 5 µm Numéro de la classe ISO N égal à 6

Choix de la classe la plus élevée, en spécifiant la taille de particule L'équipement table d'assemblage et de soudure est apte à une utilisation en salle propre de classe ISO 6 (5µm)

6- SYNTHESE

- Création d'un environnement classe N plus propre que la classe revendiquée
- **Etude à postériori**
- Requalification cycles de vie opérationnels de l'équipement
- Consommable ?

